
G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 202–223, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Lessons Learned from Building a Graph Transformation
System

Gabor Karsai

Institute for Software-Integrated Systems, Vanderbilt University,
Nashville, TN 37205, USA

gabor.karsai@vanderbilt.edu

Abstract. Model-driven software development is a language- and transforma-
tion-based paradigm, where the various development tasks of engineers are cast
in this framework. During the past decade we have developed, evolved, and ap-
plied in practical projects a manifestation of this principle through a suite of
tools we call the Model-Integrated Computing suite. Graph transformations are
fundamental to this environment and tools for constructing model translators,
for the specification of the semantics of languages, for the evolution of model-
ing languages, models, and their transformations have been built. Designing and
building these tools have taught us interesting lessons about graph transforma-
tion techniques, language engineering, scalability and abstractions, pragmatic
semantics, verification, and evolutionary changes in tools and designs. In the
paper we briefly summarize the techniques and tools we have developed and
used, and highlight our experience in constructing and using them.

Keywords: model-driven development, integrated development environments,
graph transformations, model transformations.

1 Introduction

Model-driven software development is a language- and transformation-based para-
digm, where the various development tasks of engineers are cast in this framework
[35]. Models are used in every stage of the software product’s lifecycle and the
model-oriented thinking about the product permeates every aspect of the software
engineer’s work. Models are used to capture requirements and designs, assist in the
implementation, verification, testing, deployment, maintenance, and evolution.

As there is no single language or tool that solves all these problems in software
production no single modeling language or modeling tool can solve them either -
hence a multitude of models is needed. Models are the artifacts of software produc-
tion, and there are dependencies among these models: some models are closely related
to each other (e.g. design models to requirement models), while some models (and
other, non-model artifacts) are automatically generated from models. Two examples
for the latter include ‘analysis models’ that are suitable for verification in some auto-
mated analysis tool (e.g. SMV) and executable code (e.g. in C); both of them are
derived from the same source model (e.g. UML State Machines).

 Lessons Learned from Building a Graph Transformation System 203

For a model-driven development process model transformations are essential: these
transformations connect the various models and other artifacts, and they need to be
executed frequently by the developers, or by some automated toolchain. Hence, con-
structing model transformation tools is of great importance for the builders of devel-
opment toolchains. The model transformations have to be correct, reliable, robust, and
provide high performance; otherwise the productivity of developers is reduced.

The advantages of using domain-specific approaches to software development and
modeling are well recognized [1]. Using domain-specific modeling languages neces-
sitates the development of custom, domain-specific model transformations – that are
subject to the same quality requirements as any other transformations in a toolchain.

In the past 15+ years, our team has created and evolved a tool-suite for model-
driven software development that we call ‘Model-Integrated Computing’ (MIC) suite
[24]. The toolsuite is special in the sense that emphasizes (and encourages) the use of
domain-specific models (and thus modeling languages), as opposed to focusing on a
single general purpose approach (like UML). Hence model transformations (and es-
pecially domain-specific model transformations) play an essential role in the MIC
suite. Another specialty of the suite is that it is a ‘meta-toolsuite’ as it allows defining
and constructing domain-specific toolchains with dedicated domain-specific modeling
languages.

The development of the MIC toolsuite involved creating the technology for all as-
pects of a domain-specific model-driven toolchain, including language definition
(including concrete and abstract syntax, as well a semantics), model editing, specify-
ing model transformations, the verification of models and model transformations,
code generation, the evolution of models and model transformations. In this paper we
focus on the model transformation aspects of the toolsuite and present what interest-
ing lessons have been learned about graph transformation techniques, language engi-
neering, scalability and abstractions, pragmatic semantics, verification, and evolution-
ary changes in tools and designs. In the text we will indicate important lessons using
the mark [L].

The paper is organized as follows. First, we discuss the fundamental concepts re-
lated domain-specific modeling languages. Next, the main ideas used in model trans-
formations are introduced; followed by the discussion on four selected problem do-
mains: efficiency, practical use of transformations, verification of transformations,
and the role of transformations in evolution and adaptation. The paper concludes with
a summary and topics for further research.

2 Foundations: Metamodels

The first problem in constructing a domain-specific model-driven toolchain one faces
is the specification and definition of domain-specific modeling languages (DSML)
[24]. Formally, a DSML L is a five-tuple of concrete syntax (C), abstract syntax (A),
semantic domain (S) and semantic and syntactic mappings (MS, and MC):

L = < C, A, S, MS, MC>

The concrete syntax (C) defines the specific (textual or graphical) notation used to
express models, which may be graphical, textual or mixed. The abstract syntax (A)

204 G. Karsai

defines the concepts, relationships, and well-formedness constraints available in the
language. Thus, the abstract syntax determines all the (syntactically) correct “sen-
tences” (in our case: models) that can be built. It is important to note that the abstract
syntax includes semantic elements as well. The integrity constraints, which define
well-formedness rules for the models, are frequently identified as “static semantics”.
The semantic domain (S) is usually defined by means of some mathematical formal-
ism in terms of which the meaning of the models is explained. The mapping MC:
A→C assigns concrete syntactic constructs (graphical, textual or both) to the elements
of the abstract syntax. The semantic mapping MS: A→S relates syntactic constructs to
those of the semantic domain. The definition of the (DSM) language proceeds by
constructing metamodels of the language (to cover A and C), and by constructing a
metamodel for the semantics (to cover MC and MS).

One key aspect of the model-driven development (and in particular, MIC) is that
model-driven concepts should be recursively applied [L]. This means that one should
use models (and modeling languages) to define the DSMLs, and the transformations
on those languages, and thus models should be used not only in the (domain-specific)
work, but also in the engineering of the development tool suite itself. In other words,
models should drive the construction of the tools. This recursive application of the
model-driven paradigm leads to a unifying approach, where the tools are built using
the same principles and techniques as the (domain) applications. Furthermore, one can
create generic, domain-independent tools that could be customized (via models) to
become domain-specific tools, in support of domain-specific models.

Models that define DSML-s are metamodels, and thus a metamodeling approach
should support the definition of the concrete and abstract syntax, as well as the two
mappings mentioned above. Obviously, the metamodels have a language, with an
abstract and concrete syntax, etc. and this language is recursively defined, using itself.
Thus, the metamodeling language is defined by a metamodel, in the metamodeling
language – thus closing the recursion.

Through experience we have learned that the primary issue one has to address in
defining a DSML is that of the abstract syntax [L]. It is not surprising, as abstract
syntax is closely related to database schemas, conceptual maps, and alike that specify
the core concepts, relationships and attributes of systems. Note that the abstract syn-
tax imposes the inherent organizational principles of the domain and all other ingredi-
ents of a DSML are related to it.

We have chosen the concrete syntax of UML class diagrams to define the abstract
syntax, as it is widely known, well-documented, and sufficiently precise. When choos-
ing a concrete syntax for a DSML it is important to use one that is familiar to the
domain engineers [L], in this particular case the language developers. A UML class
diagram defines a conceptual organization for the domain, but also the data structures
that can hold the domain models. This mapping from the class diagrams to data
(class) structures has been implemented in many systems.

As discussed above, the definition of abstract syntax must include the specification
of well-formedness rules for the models. We have chosen the well-documented OCL
approach here: OCL constraints could be attached to the metamodel elements and
they constrain the domain models. Note the difference: in conventional UML con-
straints restrict the object instances; here the meta-level DSML constraints restrict the
models (which are, in effect, instances of the classes of the abstract syntax) [L].

 Lessons Learned from Building a Graph Transformation System 205

One important issue with constraints is when and how they are used. As our con-
straints refer to the domain models, they are evaluated when those domain models are
constructed and manipulated. At the time when domain models are constructed the
modeler can invoke a ‘constraint checker’ that verifies whether the domain models
comply with the well-formedness specified in the metamodel. Occasionally these
checks are automatically triggered by specific editing operations, but most often the
modeler has to invoke them. Often the checks are made just before a model transfor-
mation is executed on the models. As these checks may involve complex computa-
tions, it is an interesting research question when exactly to activate them [L]; after
every editing operation, upon a specific modeler command, when the models are
transformed, etc.

The concrete syntax defines the rendering of the domain model in some textual or
graphical form. Obviously, the abstract syntax can be rendered in many different
concrete forms [L], and different forms could be effective for different purposes. A
purely diagrammatic form is effective for human observation, but an XML form is
better for automated processing. Choosing a concrete syntax has a major impact on
the usability of a DSML [L].

There have been a number of successful research efforts to make the concrete syn-
tax highly flexible [17][37]. These techniques typically provide a (frequently declara-
tive) specification for rendering the abstract syntax into concrete syntax as well as
interpreting elementary editing events as specific operations that manipulate the un-
derlying data structures of models. Alternatively, one can generate diagram editors
from specifications [35]. These techniques are very flexible and general and can be
used to create very sophisticated model editing environments. In effect, these tech-
niques operationalize the mapping MC above.

We have chosen a different approach that is less flexible but allows rapid experi-
mentation with DSML-s; we call this ‘idiomatic specification of concrete syntax’
[25]. In our previous work, we have created a number of graphical modeling envi-
ronments (graphical model editors) that have used a few model organization princi-
ples coupled together with a few visual rendering and direct manipulation techniques.
For example, hierarchical containment, simple associations between model elements,
associations between elements of disparate models that are contained within higher
order models, and indirect referencing are such model organization principles that
could be visualized using hierarchical diagrams, edges between icons, edges between
ports of icons, and icons that act as pointers to distant model elements, respectively.
Each such model organization principle is represented with a visual idiom. In our
metamodeling language, each metamodel element has a stereotype that indicates the
visual idiom to be used when rendering the corresponding domain model element.
This approach, while much more limited than the approaches to relating concrete
syntax to abstract syntax mentioned above, gives a rapid feedback for the designer of
a DSML: the designer constructs UML class diagrams using predefined classes and
associations with predefined stereotypes (e.g. <<Atom>>, <<Model>>, <<Connec-
tion>>, <<Reference>>, <<Set>>, etc.) and the resulting diagram immediately speci-
fies not only the abstract syntax of the DSML, but also the concrete syntax. With the
help of a generic visual modeling environment, one can experiment with the new
DSML literally within seconds. This experience has shown that choosing a simple

206 G. Karsai

technique for specifying the visualization of models could be very effective, although
much less general than a full realization of the mapping MC: A→C [L].

Defining the semantics of a domain-specific modeling language is a complex prob-
lem, and it is the subject of active research. In our MIC suite we have chosen a trans-
formation based approach that we will discuss in a subsequent section.

Related work: Model-driven development is outlined in the Model-Driven Architec-
ture vision of OMG, and it is an active area of research as illustrated by the series of
conferences on ‘Model-Driven Engineering Languages and Systems’. However, soft-
ware engineering environments for model-driven systems development have evolved
from classical integrated development environments [32], and many of the same prob-
lems appear (and are re-solved) in a newer setting. Arguably, the novelty in
MDA/MDE is the use of codified modeling languages for object-oriented design
(UML) and the increasing use of domain-specific abstractions and dedicated, visual,
domain specific modeling languages [26]. As such, the focus in the model-driven
approach is moving away from the classical (textual) ‘document’ oriented approach
towards to (graphical) ‘model’ oriented approach. This has an implication on how the
development artifacts are stored and manipulated: in classical text-oriented environ-
ments parsing and un-parsing are important steps, while in model-driven environ-
ments (graphical) models are often rendered graphically and manipulated directly.
Interestingly, one can draw parallels between the data model for abstract syntax trees
(for source code) and the metamodels: they capture the concepts, relationships, and
attributes of a ‘language’ (for programming and modeling, respectively).

3 Model Transformations

Model transformations play an essential role in any model-driven development tool-
chain, as discussed above [35]. They integrate different tools, they are used in refac-
toring and evolving model-based designs, they were used to specify code generators,
and they are used in everyday work, for rapid development activities. Additionally,
their efficiency, quality, and robustness are of great importance for pragmatic reasons:
inefficient transformations lengthen development iterations, poor quality transforma-
tions produce inefficient models or code, and brittle transformations can cause great
frustrations among developers.

It is widely recognized in the model transformation community that graph trans-
formations serve as a suitable foundation for building model transformation systems.
Graph transformations are not the only approach, but because of their long history and
solid mathematical foundations they provide a solid background upon which model
transformation systems can be built.

3.1 Model Transformations via Efficient Graph Transformations

Graph transformations are specified in the form of graph rewriting rules, where each
rule contains a left-hand-side graph (LHS) and right-hand-side graph (RHS) [39].
When a rule is applied, an isomorphic occurrence of the LHS in the input graph is

 Lessons Learned from Building a Graph Transformation System 207

sought and when found it is replaced by the RHS of the rule. Typically a transforma-
tion consists of more than one rule and these are applied in some order, according to
some specification (either implicit or explicit). Note that the input and the output of
the transformation are typed graphs, where each node has a specific type, and a rule
matches only if node types match between the LHS (the pattern) and the input (host)
graph.

Graph rewriting rules offer a very high-level formalism for defining transformation
steps. It is easy to see that the procedural code that performs the same function as a
rewriting rule could be quite complex. In fact, every graph rewriting rule execution
involves a subgraph isomorphism search, followed by the manipulation of the target
(output) graph. The efficiency of the graph transformation is thus highly dependent on
the efficiency of the graph isomorphism search [L].

Fig. 1. Model transformation rule example

The worst-case run-time complexity of graph isomorphism test is exponential in
the size of the graphs involved, but in graph transformations we only search for a
fixed pattern, and the worst case time complexity for is O(nk), where n is the size of
the graph and k is the size of the pattern. In our graph transformation-based model
transformation system, called GReAT [2], we further reduced this by using localized
search. The host graph is typically much larger than the pattern graph, and the pattern
matches in a local neighborhood of a relative small number of nodes. Such localized
search can be achieved by pre-binding some of the nodes in the pattern to specific
nodes in the host graph. As shown on Fig. 1, the State and NewState nodes of the
pattern are bound to two nodes in the graph (In and In1, respectively), before the rest
of the pattern is matched. In other words, the pattern is not matched against all nodes
in the host graph, rather only in the neighborhood of selected, specific nodes. When
the rule is evaluated, the pattern matcher produces a set of bindings for the pattern
nodes Rel, Data, NData, and OrState, given the fixed binding of the nodes
State and NewState. Starting the search from ‘pivot’ nodes leads to significant
reduction in the complexity of the pattern matching process as the size of the local
context is typically small (provided one avoids the so-called V-structures [11]).

208 G. Karsai

Localized search, however, necessitates the determination of the locale, i.e. the
binding of the State and NewState nodes in the example. This problem was
solved by recognizing the need for a traversal path in the input graph. General pur-
pose graph transformation approaches perform graph matching on the entire graph,
and this has serious implications on the execution speed of such systems. In our sys-
tem, similarly to some other systems like PROGRES [41] and Fujaba [25], we require
the developer to explicitly provide a traversal path that sets how the rewriting rules
are applied in the input graph. In practical systems model graphs have a well-known
‘root’ node where traversal can start form, and the first step in the transformation
must have a rule that binds that root to one of the pattern nodes. A rewriting rule can
also ‘hand over’ a node (existing, i.e. matched or newly created) to a subsequent rule
(this is indicated on the example by the connection from the State to the Out port
of the rule). Note that the patterns expressed in the rewriting rules and the sequencing
of the rules (i.e. connecting the output ports of rules to input ports of other rules)
implicitly specify how the input graph is traversed (and thus how the rewriting opera-
tions are sequenced). The sequencing can be combined with a hierarchy, as shown on
Fig. 2.

While the approach appears to be more complex (and ‘lower-level’ compared to
general graph transforms), in practice it is quite manageable. Depth-first and breadth-
first traversals, traversals using arbitrary edge types, even fixpoint iterations over the
graph are straightforward to implement. In our experience, trading off generality and
developer’s effort for efficiency in the resulting transformation results in transforma-
tions that are not only reasonably fast (on large graphs) but also easier to under-
stand, debug, and verify [L].

In our research, we wanted to build ‘industrial strength’ model transformations that
operate on large models. Our first implementation of the model transformation engine
was completely ‘interpreted’: the engine executed the rewriting rule sequence on the
input graph; exhibiting expected performance shortcomings. Once the semantics of
the transformation rules and programs was clear and stabilized, we have developed a
code generator that produced executable code from the transformation models. The
generator was implemented using the well-known partial evaluator technique and it
produced code based on the partial evaluation of the transformation program with
respect to the transformation interpreter semantics. For practical applications, such a
‘compilation-based’ approach to enhancing the performance of model transforma-
tions is essential [L].

Related work: PROGRES [41] is arguably the first widely used tool for specifying
transformations on structures represented as graphs. PROGRES has sophisticated
control structures for controlling the rewriting the process, in GReAT we have used a
similar, yet different approach: explicitly sequenced rules that form control flow dia-
grams. PROGRES also supports representing type systems for graphs; in GReAT we
use UML diagrams for this purpose. The very high-level notion of graph transforma-
tions used in PROGRES necessitates sophisticated techniques for efficient graph
matching ([10] [39]); in GReAT we mitigate this problem by using less powerful
rules and (effectively) performing a local search in the host graph.

 Lessons Learned from Building a Graph Transformation System 209

Fig. 2. Sequencing and hierarchy of rewriting rules

Fujaba [25] is similar to GREAT in the sense that it relies on UML (the tool was
primarily built for transforming UML models) and uses a technique for explicitly
sequencing transformation operations. Fujaba follows the state-machine-like “story
diagram” approach [13] for scheduling the rewriting operations; a difference from
GReAT.

AGG [43] is a graph transformation tool that relies on the use of type graphs, simi-
lar to UML diagrams but does not support all UML features (e.g. association classes).
Recent work related to AGG introduced a method for handling inheritance, as well as
a sophisticated technique for checking for confluence (critical pair analysis). In
GReAT, inheritance is handled in the pattern matching process, and the confluence
problem is avoided by using explicit rule sequencing. AGG has support for control-
ling the parsing process of a given graph in the form of layered grammars; a problem
solved differently in GReAT.

VIATRA [5] is yet another graph transformation tool with interesting capabilities
for controlling the transformations (state machines), and the composition of more
complex transformations. In GReAT similar problems were addressed via the explicit
control flow across rules and the formulation of blocks. Higher-order transformations
were also introduced in VIATRA; there is no similar capability in GReAT currently.

GReAT can also be compared to the recent QVT specification [39] of the OMG
MDA standardization process. However, we should emphasize that GReAT was
meant to be a research tool and not an industry standard. With respect to the QVT, the
biggest difference between GReAT and QVT is in the highly declarative nature of the
QVT: it focuses on relation mappings. This is a very high-level approach, and it is far
from the pragmatic, lower-level, efficiency-oriented approach followed in GReAT.
We conjecture that describing a transformation in QVT is probably more compact, but
the same transformation in GReAT is more efficient.

210 G. Karsai

In a more general setting, we should compare GReAT and the tool environment it
belongs to, i.e. the MIC tools including GME and UDM. Honeywell’s DOME [13],
MetaCASE’s MetaEdit [25], and the ATOM3 [28] environment are the most relevant
examples that support domain-driven development. The main difference between
them and the MIC tools is in the use of UML and OCL for metamodeling and the way
the metamodels are (also) used for instantiating a visual modeling environment. Also,
our transformations follow a high-level method for describing the transformation
steps expressed in the context of the metamodels. With exception of ATOM3, all the
above tools use a scripting language, in contrast.

3.2 Practical Use of Model Transformations

The model transformation environment we have created has been used in a number of
academic and practical projects. Students, researchers, and developers have used it to
create practically useful transformations ranging from converting between modeling
formalisms to generating code from models. Some of the transformations were of the
‘once-only’ (or ‘throw-away’) type; some of them are in daily use in tools. In these
efforts we have learned a few important lessons discussed below.

1. Reusable patterns. Given a model transformation language, developers often
discover important and useful transformation patterns that are worth docu-
menting and reusing [L]. These patterns are essentially generic transformation
algorithms that are usable across a number of domain specific modeling lan-
guages. Conceptually, they are like C++ template libraries that provide generic
data structures and algorithms over domain-specific types. Practically, they
provide a reusable solution to a recurring transformation problem. Such pat-
terns are rarely implemented by a single rule, rather, by a sequence or group of
rules.

To increase the reusability of such transformation patterns, a model trans-
formation language should support templates [L], which are rules or rule se-
quences that are parameterized with types. When the transformation designer
wishes to use a transformation template, s/he can bind the type parameters to
concrete, domain-specific model element types and the tool environment
should instantiate the pattern.

2. Cross-domain links. In model transformations the source and target models
typically (but not always) belong to different metamodels (i.e. different type
systems). During the transformation process it is often necessary to create a link
between two model elements that belong to different domains (metamodels),
but this brings up the question: which metamodel does the association belong
to? Neither of the source or target metamodels ‘owns’ such an association, the
association belongs to the cross-product space of the two. Hence, the model
transformation system should be able to allow such ‘cross-domain’ links [L]; at
least temporarily, while the transformation is being executed [2].

3. Global context. The localized rewriting approach described above has a prac-
tical shortcoming: the context of the rewriting has to be always present during
the execution of a rule [41]. That is, a rule cannot just create an ‘orphan’ target
model element – the element has to be inserted into an appropriate container,
which is in the target context. In other words, the state of the transformation

 Lessons Learned from Building a Graph Transformation System 211

often has to be incrementally built and passed from rule to rule. This leads to
rules that have superfluous input and output ports, just for passing the context
through; and a large number of connections between rules. The simplicity of
the transformation model is important, and such ‘accidental complexity’ con-
fuses developers [L]. We have introduced the concept of a ‘global container,’
where new temporary model elements can be created and latter found via
search. In other words, a rule can create a model element in this container and
a subsequent rule can refer to it simply referring to the container and using the
pattern matcher to find the element. Note that such global containers are use-
ful, although somewhat ‘unhygienic’ tools for implementing model transfor-
mations [L].

4. Multiple matches and sorting. A model transformation rule often matches to
multiple isomorphic subgraphs in an input graph, and even a localized rewriting
rule could generate multiple, consistent matches with different bindings to pat-
tern nodes. In general, the order of such matches is nondeterministic as it de-
pends on how the underlying ‘model database’ is implemented. We chose to
process these matches sequentially, and for every match we execute the right
hand side of the rule, which leads to non-deterministic results. We found that in
many applications the order of processing of such matches does matter [L]. To
solve this problem we have introduced an optional ‘sort’ function for the rewrit-
ing rule that the designer can specify [41]. This function is applied to the result
of the pattern matcher before the rule is actually executed, and the function can
sort the results in any order of interest. How the matches need to be sorted is
domain-specific, hence it is better left in the hands of the developer [L].

5. Multiple matches and grouping. When the pattern matcher generates a col-
lection of matches (each one with a distinct set of bindings of input graph
nodes to pattern nodes), the rewriting rule processes them one by one. The ma-
jor limitation with this simple algorithm is the inability to apply a single rule
action across multiple matches [L]. After all matches are computed, the rule’s
action (RHS) is executed individually, on each match; furthermore, there ex-
ists no mechanism by which one can access information about an earlier match
while processing a specific match. This can sometimes pose a severe limita-
tion to the types of transformations one can write. For instance, the user may
need the ability to operate on an entire subgraph (composed from multiple
matches) as a whole rather than on individual elements. If this subgraph may
contain an arbitrary number of elements, then the graph pattern cannot be
specified as a simple rule.

We have introduced a higher-order ‘subgroup’ operator that allows forming
groups from the matches during rule execution [3] [4]. The operator has a
number of attributes the designer can specify, including functions that are
evaluated to determine whether a match belongs to a group or not. The opera-
tor extends the rule execution semantics as follows: (1) the pattern matcher
produces a set of matches; (2) matches are used to form groups, based on func-
tions supplied with the operator, (3) the rule is executed for each group
formed. Note that a group may contain one or more matches. The subgroup
operator has demonstrated the value of higher-order operators in rewriting
rules that can operate across multiple individual rewriting steps [L].

212 G. Karsai

The above extensions have come up in practical transformation problems, and they
showed that while graph transformations provide a powerful theory, when applied to
model transformations they need to be specialized and adapted to pragmatic goals.

3.3 The Issue of Verification

The quality of a model-driven software development toolchain is determined by the
quality of the tools it includes and the model transformations that connect together
these tools. Considering that elements in the toolchain could support verification (on
the code or on the model level), the verification of the transformations, i.e. graph
transformations, is of great importance [L]. Simply, the correctness of the transfor-
mation is necessary in order to decide that the result of an automated verification
applies to the original input (model), and to the code generated from the model.

Our goal was to decide the correctness of a model transformation through some
verification process. The verification of model transformations is closely related to
the verification of compilers – one of the great challenges of computer science. Ar-
guably, the verification of model transformations is simpler, as the domain-specific
modeling languages are often simpler and have a simpler semantics than general pur-
pose programming languages.

One important observation is that the notion of correctness is not absolute, but it
has to be defined with respect to some specific domain property, which is of interest
to the users of the toolchain. For example, a model transformation can be called cor-
rect with respect to the behaviors generated by the source and the target models. For
instance, the transformation is correct if the source model (with its own source seman-
tic domain) generates the same behaviors as the target model (with its own target
semantic domain). Alternatively, a transformation is correct when a property of the
source model holds if and only if another property holds for the target model.

Practical model transformations are often very complex and the formal proof of
correctness requires a major effort. Note that a formal proof shows that the given
model transformation is correct (w.r.t. some property), for any input. Another feasible
approach is that the proof is constructed for a particular run (or ‘instance’) of the
transformation, i.e. for a given input. This, instance-based verification of the trans-
formation appears to be much simpler and feasible [L]. While the concept has been
developed in the context of program generators [5], we have successfully applied it to
model transformations [13].

Constructing the verification for a transformation instance requires building a tool
that checks what the transformation did and verifies it independently. These checks
must be simple and easily verifiable. Note that this concept is similar to provers and
proof checkers: the proof checking is typically much simpler than constructing the
proof. For a model transformation one needs (1) to choose the property the correct-
ness is defined for, (2) to discover how this property can be verified from data col-
lected during the run of the transformation, (3) to modify the model transformation to
generate the data during the run, and (4) to develop (and verify) the algorithm that
checks the data and thus verifies the property [L].

 Lessons Learned from Building a Graph Transformation System 213

One example for such transformation and verification property includes a trans-
formation between two transition system formalisms and a state reachability property.
In this case the transformation needs to generate a map that links source and target
states, and the checking algorithm must verify that there is a correspondence: a strong
bisimilarity between the two transition systems, hence reachability properties verified
for one do hold for the other [13].

Related work: The MOF 2.0 Query / View / Transformation specification [39] pro-
vides a language for declaratively specifying transformations as a set of relations that
must hold between models. A relation is defined by two or more domains, and is
declared either as Checkonly, meaning that the relation is only checked, or Enforced,
meaning that the model is modified if necessary to satisfy the relation. It is augmented
by a when clause that specifies under what conditions the relation must hold, and a
where clause that specifies a condition that must be satisfied by all the model ele-
ments participating in the relation. Our approach provides a solution similar to the
Checkonly mode of QVT relations. The main difference is our use of pivot nodes to
define correspondence conditions and the use of cross links. This allows us to use a
look up table to match corresponding nodes. Our approach takes advantage of the
transformation framework to provide a pragmatic and usable verification technique
that can ensure that there are no critical errors in model instances produced by auto-
mated transformations. Triple Graph Grammars [41] can be used to represent the
evolution of a model graph by applying graph transformation rules. The evolving
graph must comply with a graph schema at all times. This graph schema consists of
three parts, one describing the source metamodel, one describing the target metamodel,
and one describing a correspondence metamodel which keeps track of correspondences
between the other two metamodels. Triple graph grammar rules are declarative, and
operational graph grammar rules must be derived from them. The correspondence
metamodel can be used to perform a function similar to the cross links used here. This
provides a framework in which a map of corresponding nodes in the instance models
can be maintained, and on which the correspondence conditions can be checked. This
makes it suitable for our verification approach to be applied. Some ideas on validating
model transformations are presented in [28] and [29]. In [28], the authors present a
concept of rule-based model transformations with control conditions, and provide a
set of criteria to ensure termination and confluence. In [29], the authors focus on the
syntactic correctness of rule-based model transformations. This validates whether the
source and target parts of the transformation rule are syntactically correct with respect
to the abstract syntax of the source and target languages. These approaches are
concerned with the functional behavior and syntactic correctness of the model
transformation. We focus on the semantic correctness of model transformations,
addressing errors introduced due to loss or misrepresentation of information
during a transformation. It is possible for a transformation to execute completely and
produce an output model that satisfies all syntactic rules, but which may still not
have accomplished the desired result of porting essential information from the

214 G. Karsai

source model to the output model. Our approach is directed at preventing such seman-
tic errors. Ehrig et. al. [13] study bidirectional transformations as an approach for
preserving information across model transformations. They use triple graph grammars
to define bidirectional model transformations, which can be inverted without specify-
ing a new transformation. Our approach offers a more relaxed framework, which will
allow some loss of information (such as by abstraction), and concentrates on the cru-
cial properties of interest. We also feel that our approach is better suited for transfor-
mations involving multiple models and attribute manipulations.

3.4 Transformations in Evolution and Adaptation

One of the crucial properties of software systems is the need for their evolution and
adaptation. Software must evolve, as new requirements arise, as flaws need to be
fixed, and as the system must grow in its capabilities. Model-driven development
toolchains are also software systems, and hence the same requirement applies: they
need to evolve and adapt [L]. The problem is especially acute for tools that use do-
main-specific modeling languages, as the DSML-s may evolve not only from project
to project, but often during the lifetime of one project.

The issue of evolution for a DSML is not only how the language changes, but also
what effect this has on the already existing models. Specifically, if a large number of
models have already been built with a DSML of version n, how do we use these mod-
els with DSML version n+1, etc.? The problem is related to schema evolution (i.e.
how we evolve database content when the schema evolves), but modeling languages
typically have much richer semantics and consistency constraints than typical data-
base schemata. For DSML-s the language evolution problem is essentially a model
migration problem, i.e. how to migrate models when the DSML evolves [L].

The problem can be cast as a model transformation problem, i.e. how can one cre-
ate model transformations that automatically migrate the models from one DSML
version to the next. To analyze this problem we need to recall how a DSML is de-
fined; i.e. the metamodels. In this paradigm, the DSML evolves via changes applied
to the metamodels; i.e. changes in the abstract and concrete syntax, in the well-
formedness constraints, and in the semantic mapping. As model transformations are
anchored in the abstract syntax of the DSML it is natural to consider the metamodel
changes on that level. Changes in the concrete syntax do not affect the models (until a
syntax-free realization of the models exists), while changes in the well-formedness
constraints and semantic mapping could possibly be also formulated as a model trans-
formation problem. These latter two cases could be formulated as posing the question:
how shall the models be transformed that they comply with the updated well-
formedness constraints (if at all) and how they shall be transformed such that they
preserve their semantics under the updated semantic mapping?

Changes in the abstract syntax part of the metamodel involve changing the UML
class diagrams representing that. Such changes can be captured as elementary editing
operations on the diagram, including adding, removing, and modifying classes and
associations, etc. But focusing on these low-level changes makes it exceedingly hard to
discover the (meta-) modeler’s intent. For instance removing a class called Failure
and adding a class Fault may miss the point that this is a simple renaming of a class

 Lessons Learned from Building a Graph Transformation System 215

without changing the semantics. Hence, evolution in the abstract syntax cannot be
dependably deduced by observing editing changes on the metamodels; the modeler
needs to provide guidance or explanations for such changes [L]. For pragmatic rea-
sons, naturally, only the changes need to be documented (or discovered by some auto-
mation, if feasible) – parts of the metamodels that did not change should not become
subject to model transformations [L].

Such analysis lead us to a simple (graphical) language that allows the modeler to
document the metamodel changes by capturing how ‘old’ metamodel elements are
related to ‘new’ metamodel elements [32]. Note that the modeler essentially supplies
rewriting rules that proscribe how a model migration engine should convert ‘old’
models into ‘new’ models. In this graphical language, called Model Change Language
(MCL), we have defined a number of idioms for representing prototypical cases for
metamodel changes (and thus model migration). Fig. 3 illustrates the major idioms of
the language – these have been discovered through practical experience with model
migration problems. While the use of these idioms has been proven useful in specific
model migration problems, the formal semantics of MCL is subject of active research.
Naturally, model evolution is not a solved problem yet, but transformations appear to
offer interesting opportunities.

A migration rule specified in MCL describes a migration step which is centered on
a single, specific ‘old’ metamodel element that dominates the rule. The semantics of
the migration rule is as follows: whenever the dominant model element is found in the
‘old’ model and the left-hand side of the rule matches; then execute the migration as
specified (e.g. create a ‘new’ model element, etc.). If an ‘old’ model element is en-
countered that is not mapped by a migration rule then check if there is a ‘new’
metamodel element with the same name and create that in the ‘new’ model, if there is
none then give a warning that an ‘old’ model element was encountered but could not
be mapped. Note that there are explicit rules for saying that some ‘old’ model ele-
ments need to be removed because there are no corresponding ‘new’ model elements
– this allows detecting that the migration of some model elements was not specified
correctly by migration rules.

In MCL we faced the problem of limiting the scope of the search and we found a
solution that appears to work well. The solution is based on the observation that
model databases mostly follow a tree structure, and a dominant spanning tree can be
found for the model graph [L], often via the model containment hierarchy. Hence, we
first use a depth-first traversal on the model tree, visiting every node in the graph and
trying to find a migration rule. The rule semantics briefly described above is applied,
when possible. However, there could be rules that are not applicable yet, because they
depend on model elements that have not been visited and processed yet. These rules
are pushed onto a queue of delayed rules and the traversal continues. Once the depth
first traversal terminates, we keep processing the delay queue until it becomes empty.
This simple, fixed traversal strategy works surprisingly well. Arguably, for practical
model-driven systems that use hierarchical organization model transformations can
efficiently be performed using a depth-first traversal, followed by the processing of
rewriting steps that had to be delayed during the first traversal [L].

216 G. Karsai

Delete a model element

Add a new attribute

Modify attribute

Delete attribute

Moving class up in the containment

hierarchy

Split class into new

sub-classes

Delete inheritance relationship

Change association end-points

Reassign ‘refersTo’

association

Change containment

Merge two classes into one

Replace association with

attribute

Fig. 3. Some idioms of the Model Change Language

Related work: Our work on model migration has its origins in techniques for database
schema evolution [5]. More recently, though, even traditional programming language
evolution has been shown to share many features of model migration. Drawing from
experience in very large scale software evolution, [15] uses several examples to estab-
lish analogies between tradition programming language evolution and metamodel and
model co-evolution. Using two industrial metamodels to analyze the types of common
changes that occur during metamodel evolution, [17] gives a list of four major re-
quirements that a model migration tool must fulfill in order to be considered effective:
(1) Reuse of migration knowledge, (2) Expressive, custom migrations, (3) Modularity,
and (4) Maintaining migration history. The first, reusing migration knowledge is ac-
complished by the main MCL algorithm: metamodel independent changes are auto-
matically deduced and migration code is automatically generated. Expressive, custom
migrations are accomplished in MCL by (1) using the metamodels directly to describe

 Lessons Learned from Building a Graph Transformation System 217

the changes, and (2) allowing the user to write domain-specific code with a well-
defined API. Our MCL tool also meets the last two requirements of [17]: MCL is
modular in the sense that the specification of one migration rule does not affect other
migration rules, and the history of the metamodel changes is persistent and available to
facilitate model migration. [8] performs model migration by first examining a differ-
ence model that records the evolution of the metamodel, and then producing ATL code
that performs the model migration. Their tool uses the difference model to derive two
model transformations in ATL: one for automatically resolvable changes, and one for
unresolvable changes. They note that the generated transformation that deals with the
unresolvable changes must be refined by the user, but details of how to accomplish this
refinement are not provided. Also, [7] does not specify exactly how the difference
models are calculated, only that they can be obtained by using a tool such as EMFCom-
pare. MCL, on the other hand, uses a difference model explicitly defined by the user,
and uses its core algorithm to automatically deduce and resolve the breaking resolvable
changes. Changes classified as breaking and unresolvable are also specified directly in
the difference model, which makes dealing with unresolvable changes straightforward:
the user defines a migration rule using a graphical notation that incorporates the two
versions of the metamodel and uses a domain-specific C++ API for tasks such as que-
rying and setting attribute values. In [7], the user has to refine ATL transformation
rules directly in order to deal with unresolvable changes. [17] describes the benefits of
using a comparison algorithm for automatically detecting the changes between two
versions of a metamodel, but says they cannot use this approach because they use
ECore-based metamodels, which do not support unique identifiers, a feature needed
by their approach. Rather than have the changes between metamodel versions defined
explicitly by the user, they slightly modify the ChangeRecorder facility in the
EMF tool set and use this to capture the changes as the user edits the metamodel. Their
migration tool then generates a model migration in the Epsilon Transformation Lan-
guage (ETL). In the case that there are metamodel changes other than renaming, user
written code in ETL to facilitate these changes cannot currently be linked with the ETL
code generated by their migration tool. In contrast to this, MCL allows the user to
define complex migration rules with a straightforward graphical syntax, and then gen-
erates migration code to handle these rules and links it with the code produced by the
main MCL algorithm. [10] presents a language called COPE that allows a model mi-
gration to be decomposed into modular pieces. They note that because metamodel
changes are often small, using endogenous model transformation techniques (i.e., the
metamodels of the input and output models of the transformation are exactly the same)
can be beneficial, even though the two metamodels are not identical in the general
model migration problem. This use of endogenous techniques to provide a default
migration rule for elements that do not change between metamodel versions is exactly
what is done in the core MCL algorithm. However, in [19], the metamodel changes
must be specified programmatically, as opposed to MCL, in which the metamodel
changes are defined using a straightforward graphical syntax. Rather than manually
changing metamodels, the work in [45] proposes the use of QVT relations for evolving
metamodels and raises the issue of combining this with a method for co-adapting mod-
els. While this is an interesting idea, our MCL language uses an explicit change lan-
guage to describe metamodel changes rather than model transformations.

218 G. Karsai

Evolution of a DSML (and the subsequent migration of domain models) is not the
only activity the toolchain users face. They often need to evolve, adapt their designs
by changing models. In object-oriented software development perhaps the most pow-
erful concept for design adaptation is the use of design patterns. By definition, design
pattern is a general reusable solution to a commonly occurring problem in software
design. When developers use a design pattern they modify their designs according to
the pattern, in other words they instantiate the design pattern in the context of their
work. If the design is captured in a model, then a design pattern is a particular ar-
rangement of newly built or existing model elements, possibly with some new
features added. Arguably, a design pattern can be modeled as a specialized model
transformation rule that rewrites a design into a new design with the design pattern
features (model elements, attributes, etc.) added [L]. Note also that design patterns
applied in domain-specific modeling languages will have domain-specific elements
hence they can be called as ‘domain-specific design patterns’.

+operation()
+add(in c : Component)
+remove(in c : Component)
+getChild(in index : int)

Component

+operation()

Leaf

-children

1

*

+operation()
+add(in c : Component)
+remove(in c : Component)
+getChild(in index : int)

Composite

forall g in children
 g.operation()

COMPOSITE PATTERN

Fig. 4. The Composite Pattern as a model transformation rule

One example for realizing a design pattern as a transformation rule is shown on
Fig. 4. Here the well-known ‘Composite’ design pattern is used. When the designer
wants to introduce this pattern into a design, s/he will either just copy it into the
model and modify it, or bind it to existing model elements (say, Compound and
Primitive, shown on the left) which will result in a modified model that contains the
original as well as new elements (shown on Fig. 5).

Note that the application of design patterns becomes an interactive activity this
way that the modeler performs at model construction time. Design patterns can be
applied to existing design, and they can extend or even refactor those designs. Design
patterns can be highly domain specific hence they can be applied in any DSML.

 Lessons Learned from Building a Graph Transformation System 219

+run()
+add(in c : PC_Component)
+remove(in c : PC_Component)
+getChild(in index : int)

PC_Component

+run()

Primitive

-children

1

*

+run()
+add(in c : PC_Component)
+remove(in c : PC_Component)
+getChild(in index : int)

Compound

forall g in children
 g.run()

COMPOSITE PATTERN
applied to Compound and Primitive

Fig. 5. Composite pattern applied

We have created a set of tools to support the definition and application of design
patterns in arbitrary DSML-s that are defined by a metamodel [32]. One tool is used
(once) to extend the metamodel of a given DSML such the patterns can be built from
existing model elements. Another tool is available to the modeler that uses the
DSML: this tool applies the pattern as a local model transformation. The modeler can
bind existing model elements to elements of the pattern and the applicator tool ex-
tends and modifies the model as specified by the pattern.

Related work: There are several mainstream tools that support UML design patterns,
or describe design patterns using general-purpose languages, as opposed to using the
metamodel of the DSMLs. Moreover, there are several approaches for pattern formal-
ization. Here, we reference the closest related work only. Previous work [32] has
justified the demand for Domain-Specific Model Patterns by contributing several
DSMLs. Moreover, it describes relaxation conditions for the metamodels in order to
make metamodeling environments support the editing of incomplete models. As op-
posed to the approach introduce above, it deals with static model patterns only. In our
approach, relaxations can be made on the metamodel of the pattern environment. The
multiplicities can be substituted with the upper bound of the multiplicity set, dangling
edges can be defined with ignored end nodes and transitive containment can be solved
with ignored containers. Incomplete attributes can be implemented the same way. [17]
describes a UML-based language, namely, the Role-Based Metamodeling Language
(RBML), which is able to specify domain-specific design patterns. This approach
treats domain patterns as templates, where the parameters are roles, and a tool gener-
ates models from this language. Compared to our approach, the paper [22] proposes a
formal way to specify the pattern embedding for the static aspect. The behavioral
formalization is closely coupled with design patterns defined in UML. The work de-
scribed in [5] formalizes the embedding, tracing, and synchronization between several

220 G. Karsai

pattern aspects that may be defined in different languages. These results constitute an
excellent theoretical formalization of the tracing aspects for model patterns defined in
the static aspect.

4 Summary and Conclusions

The model-driven development approach has significantly changed how software is
built and evolved, and new development environments are coming equipped with
model-driven support. The techniques and the tools we have developed in the past
decade indicate that model-driven development works, but the complexity of the
development tools (and the effort to build them) is increasing as well. In this paper we
have outlined a few of the lessons that we have learned during building and using our
tools on non-trivial projects. Building tools to build software is essential to solve the
software development problem and the effort put into constructing a good tool (-suite)
pays off in developer’s productivity. The lessons described in this paper show steps in
an evolutionary process, and by no means should be considered the final word on
model-driven development. As tools and techniques evolve, we need to learn new
lessons, and enable the developers to benefit from them.

Acknowledgements. This work was sponsored, in part, by the Evolutionary Design
of Complex Systems and Software, the Model-based Integration of Embedded Sys-
tems, and the Software Producibility programs of DARPA and AFRL, and by the
NSF ITR on "Foundations of Hybrid and Embedded Software Systems". The views
and conclusions presented are those of the authors and should not be interpreted as
representing official policies or endorsements of DARPA, NSF, or the US govern-
ment. The work described in this paper has involved a number of researchers, engi-
neers and students at the institution of the author, including but not limited to: Janos
Sztipanovits, who started it all, Aditya Agrawal, Arpad Bakay, Daniel Balasubrama-
nian, Jeff Gray, Zsolt Kalmar, Akos Ledeczi, Tihamer Levendovszky, Endre Magyari,
Miklos Maroti, Anantha Narayanan, Benjamin Ness, Sandeep Neema, Feng Shi, Jona-
than Sprinkle, Ryan Thibodeaux, Attila Vizhanyo, Peter Volgyesi. All this is really
their work.

References

1. Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G.: Reusable Idi-
oms and Patterns in Graph Transformation Languages. Electronic Notes in Theoretical
Computer Science 127, 181–192 (2005)

2. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The Design of a Language for
Model Transformations. Journal on Software and System Modeling 5, 261–288 (2006)

3. Balasubramanian, D., Narayanan, A., Neema, S., Shi, F., Thibodeaux, R., Karsai, G.:
A Subgraph Operator for Graph Transformation Languages. ECEASST 6 (2007)

4. Balasubramanian, D., Narayanan, A., Neema, S., Ness, B., Shi, F., Thibodeaux, R., Karsai,
G.: Applying a Grouping Operator in Model Transformations. In: Schürr, A., Nagl, M.,
Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 410–425. Springer, Heidelberg
(2008)

 Lessons Learned from Building a Graph Transformation System 221

5. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. In: Proceedings of the Association for Computing
Machinery Special Interest Group on Management of Data, pp. 311–322 (2007)

6. Bottoni, P., Guerra, E., Lara, J.: Formal Foundation for Pattern-Based Modelling. In:
Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 278–293. Springer,
Heidelberg (2009)

7. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating Co-evolution in
Model-Driven Engineering. In: 12th International IEEE Enterprise Distributed Object
Computing Conference, ECOC, pp. 222–231 (2008)

8. Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varro, D.: VIATRA — Visual
Automated Transformations for Formal Verification and Validation of UML Models. In:
IEEE Conference on Automated Software Engineering, pp. 267–270 (2002)

9. Denney, E., Fischer, B.: Certifiable Program Generation. In: Glück, R., Lowry, M. (eds.)
GPCE 2005. LNCS, vol. 3676, pp. 17–28. Springer, Heidelberg (2005)

10. Dörr, H.: Efficient Graph Rewriting and its implementation. LNCS, vol. 922. Springer,
Heidelberg (1995)

11. Dörr, H.: Bypass Strong V-Structures and Find an Isomorphic Labelled Subgraph in Lin-
ear Time. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp.
305–318. Springer, Heidelberg (1995)

12. DSLs: The Good, the Bad, and the Ugly, Panel at the ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Nashville, TN,
October 22 (2008)

13. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving bidirec-
tional model transformations. In: Fundamental Approaches to Software Engineering, pp.
72–86 (2007)

14. Engstrom, E., Krueger, J.: Building and rapidly evolving domain-specific tools with
DOME. In: IEEE International Symposium on Computer-Aided Control System Design,
pp. 83–88 (2000)

15. Favre, J.M.: Meta-models and Models Co-Evolution in the 3D Software Space. In: Pro-
ceedings of the International Workshop on Evolution of Large-scale Industrial Software
Applications (ELISA) at ICS (2003)

16. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidel-
berg (2000)

17. Fondement, F., Baar, T.: Making metamodels aware of concrete syntax. In: Hartman, A.,
Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 190–204. Springer, Heidel-
berg (2005)

18. Gruschko, B., Kolovos, D.S., Paige, R.F.: Towards Synchronizing Models with Evolving
Metamodels. In: Proceedings of the International Workshop on Model-Driven Software
Evolution (MODSE) (2007)

19. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE: A Language for the Coupled Evolu-
tion of Metamodels and Models. In: MCCM Workshop at MoDELS (2009)

20. Herrmannsdoerfer, M., Benz, S., Jurgens, E.: Automatability of Coupled Evolution of
Metamodels and Models in Practice. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 645–659. Springer, Heidelberg
(2008)

21. Kim, D.-K., France, R., Ghosh, S., Song, E.: A UML-Based Metamodeling Language to
Specify Design Patterns. In: Proc. Workshop Software Model. Eng. (WiSME) (2004)

222 G. Karsai

22. Kim, S.-K., Carrington, D.A.: A formalism to describe design patterns based on role con-
cepts. Formal Asp. Comput. 21(5), 397–420 (2009)

23. Karsai, G., Narayanan, A.: On the Correctness of Model Transformations in the Develop-
ment of Embedded Systems. In: Kordon, F., Sokolsky, O. (eds.) Monterey Workshop
2006. LNCS, vol. 4888, pp. 1–18. Springer, Heidelberg (2007)

24. Karsai, G., Ledeczi, A., Neema, S., Sztipanovits, J.: The Model-Integrated Computing
Toolsuite: Metaprogrammable Tools for Embedded Control System Design. In: IEEE Joint
Conference CCA, ISIC and CACSD, Munich, Germany (2006)

25. Kelly, S., Tolvanen, J.-P.: Visual domain-specific modelling: Benefits and experiences of
using metaCASE tools. In: Bezivin, J., Ernst, J. (eds.) Proceedings of International Work-
shop on Model Engineering, ECOOP 2001 (2000)

26. Kent, S.: Model Driven Engineering. In: Proceedings of the Third International Confer-
ence on Integrated Formal Methods, May 15-18, pp. 286–298 (2002)

27. Klein, T., Nickel, U., Niere, J., Zündorf, A.: From UML to Java And Back Again, Tech.
Rep. tr-ri-00-216, University of Paderborn, Paderborn, Germany (September 1999)

28. Küster, J.M.: Systematic validation of model transformations. In: Proceedings 3rd UML
Workshop in Software Model Engineering (WiSME 2004) (October 2004)

29. Küster, J.M., Heckel, R., Engels, G.: Defining and validating transformations of uml mod-
els. In: HCC 2003: Proceedings of the 2003 IEEE Symposium on Human Centric Comput-
ing Languages and Environments, Washington, DC, USA, pp. 145–152. IEEE Computer
Society, Los Alamitos (2003)

30. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-modelling.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer,
Heidelberg (2002)

31. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing domain-specific design environments. IEEE Computer, 44–51 (November
2001)

32. Levendovszky, T., Lengyel, L., Mészáros, T.: Supporting domain-specific model patterns
with metamodeling. Software and Systems Modeling (March 2009), doi:10.1007/s10270-
009-0118-3

33. Levendovszky, T., Karsai, G.: An Active Pattern Infrastructure for Domain-Specific Lan-
guages. Accepted for presentation at First International Workshop on Visual Formalisms
for Patterns (VFfP 2009), Corvallis, Oregon, USA (2009)

34. Nagl, M. (ed.): Building Tightly Integrated Software Development Environments: The IP-
SEN Approach. LNCS, vol. 1170. Springer, Heidelberg (1996) ISBN 3-540-61985-2

35. Minas, M.: Concepts and realization of a diagram editor generator based on hypergraph
transformation. Sci. Comput. Program. 44(2), 157–180 (2002),

 http://dx.doi.org/, doi:10.1016/S0167-6423(02)00037-0
36. Model-Driven Architecture Guide, OMG,

http://www.omg.org/docs/omg/03-06-01.pdf
37. Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schnekenburger, R., Gérard,

S., Jézéquel, J.M.: Model-driven analysis and synthesis of concrete syntax. In: Nierstrasz,
O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 98–110.
Springer, Heidelberg (2006)

38. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic Domain
Model Migration to Manage Metamodel Evolution. In: Schürr, A., Selic, B. (eds.) MOD-
ELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009),

 http://dx.doi.org/, doi:10.1007/978-3-642-04425-0_57
39. OMG QVT specification, http://www.omg.org/docs/ptc/05-11-01.pdf

 Lessons Learned from Building a Graph Transformation System 223

40. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation.
World Scientific Publishing Co. Pte. Ltd., Singapore (1997)

41. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Hei-
delberg (1995)

42. Schürr, A., Winter, A., Zündorf, A.: Graph grammar engineering with PROGRES. In: Bo-
tella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer, Heidel-
berg (1995)

43. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp.
446–453. Springer, Heidelberg (2004)

44. Vizhanyo, A., Neema, S., Shi, F., Balasubramanian, D., Karsai, G.: Improving the Usabil-
ity of a Graph Transformation Language. In: Proceedings of the International Workshop
on Graph and Model Transformation (GraMoT 2005), March 27, 2006. Electronic Notes in
Theoretical Computer Science, vol. 152, pp. 207–222 (2005)

45. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Ernst, E. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

46. Zündorf, A.: Graph pattern matching in PROGRES. In: Cuny, J., Engels, G., Ehrig, H.,
Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 454–468. Springer,
Heidelberg (1996)

	Lessons Learned from Building a Graph Transformation System
	Introduction
	Foundations: Metamodels
	Model Transformations
	Model Transformations via Efficient Graph Transformations
	Practical Use of Model Transformations
	The Issue of Verification
	Transformations in Evolution and Adaptation

	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

